
The derivations here provide some background regarding the different strate-
gies considered by the website. Four strategies are examined: Straight Line,
Constant Heading, Dynamic Heading and the Dog Paddle.

Most of what appears here is basic algebra and geometry, although the Dog
Paddle scenario involves some simple differential equations, and calculus appears
occasionally. Even if your math is rusty, the derivations are very detailed, and
you should get the gist. From a practical point of view, it’s the conclusions that
matter.

1 Straight Line

In this case, the boat travels in a straight line to the destination, steering so as
to compensate for the current. This is the easiest strategy to understand, and
it sets the stage for the additional strategies.

1.1 Constant Current

To begin, assume that the current is constant throughout the journey. The boat
starts at (0, 0) and the destination is at (w, d). It is assumed that w > 0 so that
the destination is to the east of the starting point. Let v be the current and b
be the speed of the boat relative to the water. The current is assumed to flow
strictly in a north/south direction; there is no current flowing east/west. Let
(α, β) be the boat’s thrust vector; that is,

α = b cos θ

β = b sin θ,

where θ is the heading (with θ = 0 corresponding to due east). Note that
b2 = α2 + β2.

Let t be the time taken to reach the destination. Then

w = αt

d = (β + v)t.

From these two equations it is possible to derive values for α, β and t:

t = w/α,

which implies

dα = w(β + v).

Square both sides and make use of α2 = b2 − β2:

d2α2 = w2(β + v)2

d2(b2 − β2) = w2(β + v)2.
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Expand this out, collect terms and apply the quadratic formula to obtain 1

β =
−vw2 ±

√
d2(w2b2 − v2w2 + d2b2)

w2 + d2
. (1)

So, given the various inputs (v, w, etc.), this formula provides β, which in turn
gives α and t. In a similar way,

α =
vwd± w

√
w2b2 − v2w2 + d2b2

w2 + d2
. (2)

If your algebra is rusty, then one of the things about Equation (1) that may
be confusing is the ± in front of the square root. One way to to think about the
two solutions given by Equation (1) is that the equation doesn’t say anything
about whether d is upstream or downstream; one of the two “solutions” will go
a distance of |d| upstream, and the other will go |d| downstream.2 Only one of
these is the correct answer. In fact, things are a little more complicated than
that.

The quantity under the square root (the “discriminant”) must be positive
since you can’t take the square root of a negative number, and the discriminant
is negative when v is large. In particular, if |v| > (b/w)

√
w2 + d2, then the

discriminant is negative. Leaving the math aside, if the boat can go faster than
the current, then the boat can go “anywhere,” but if the boat is slower than
the current, then there are limits on the points it can reach. It’s useful to know
what these limits are.

By assumption,

d = (β + v)t,

and this can be rewritten as

d =
w(β + v)√
b2 − β2

.

Let f(β) = d be this function for d in terms of β. The values for f(β) will range
over all possible points upstream and downstream that the boat can reach. We
want to know what the extreme values are, so solve f ′(β) = 0.

f ′(β) =
w(b2 + βv)

(b2 − β2)3/2
,

1At this point, it may be tempting to observe that β must be less than b, and see where
that leads. The short answer is, “nowhere.” What it leads to is

(d2 + w2)(v + b)2 > 0,

which is trivially true.
2In fact, that’s not the whole story. Suppose that the destination is downstream. The boat

might go there quickly by pointing only slightly into the current, or it could fight the current
more nearly head-on, and slowly inch across the current.
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and this is zero iff

β = −b2/v.

If b > |v|, then this extremum would occur when β > b, which is not possible
(the boat can’t go that fast). So the question of an extremum only makes sense
when |v| < b. But we knew that anyway, since b > |v| implies that the boat can
go “anywhere.”

Set β0 = −b2/v. Then

f(β0) = sgn(v)
w

b

√
v2 − b2, (3)

which provides a tidy expression for how the boat’s destination is limited when
b < |v|.

Note that if b = v exactly, then we need to be a little more careful, for then
β0 = −b, and the boat makes no headway at all in the x-direction. In this case,
we can get as close as we want to f(β0) (by making β closer and closer to b, so
that the crossing takes longer and longer), but never quite reach it.

Finally, the expression for β includes terms in d2 but not in d, and this can
be confusing. Just because d is reachable, does not mean that −d is reachable,
even though the same value for β “solves” the equation in the two cases.

1.2 Variable Current

Assume that the current is divided into n vertical strips, where the current
is constant in each strip. The total width is w, and the strips have widths
w1 . . . wn, so that w =

∑
wi. The thrust varies from strip to strip. Let the

thrust in strip i be given by (αi, βi), and let vi be the current in each strip. Use
ti to represent the time taken to cross each strip. Then

wi = αiti

di = (βi + vi)ti,

where di is the amount by which the boat’s y-position changes as it crosses each
strip. To reach the destination at (w, d), we must have d =

∑
di.

Determining the (αi, βi) is very much as above, in the constant current case.
The boat must follow the line from (0, 0) to (w, d) and the thrust in each strip
is chosen to compensate for the current, vi. The line is given by

y =
d

w
x,

so that

di =
d

w
wi,
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and

di = (βi + vi)ti
d

w
wi = (βi + vi)ti

d

w
wi = (βi + vi)

wi

αi

d2(b2 − β2
i ) = w2(βi + vi)

2.

As before, this can be solved to obtain

βi =
−viw2

i ±
√
d2i (w2

i b
2 − v2iw2

i + d2i b
2)

w2
i + d2i

, (4)

which has exactly the same from as in the constant current case.

1.3 Variable Current and Variable Boat Speed

Suppose that the speed of the boat is allowed to vary from strip to strip, with
bi equal to the boat’s speed in strip i. The same algebra used to arrive at
Equation (4) gives

βi =
−viw2

i ±
√
d2i (w2

i b
2
i − v2iw2

i + d2i b
2
i )

w2
i + d2i

. (5)

2 Constant Heading

If the current is constant throughout the width, then a boat which takes a
constant heading will follow a straight line, and the situation is identical to
what was considered in the previous section. So allow the current to vary over
the width.

Set things up just as in the Straight Line case. There are n vertical strips
with total width w. Each strip has width wi, and current vi. The time taken
to cross each strip is ti.

This case differs from the Straight Line strategy in that the thrust vector
is constant throughout all the strips. The thrust is always (α, β), with no
subscripts, so that

wi = αti

di = (β + vi)ti,

where di is the amount by which the boat’s y-position changes as it crosses each
strip. To reach the destination at (w, d), we must have d =

∑
di. So

w = α
∑

ti

d =
∑

(β + vi)ti
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The goal is to choose α and β to solve these equations, so that the boat arrives
at the destination.

The algebra is very much as in the Straight Line case:

ti = wi/α

d =
∑

(β + vi)(wi/α),

so that

dα =
∑

(β + vi)wi

= βw +
∑

viwi.

Set V =
∑
viwi. The same process that was used in the Straight Line case works

here. Square both sides, collect like terms, and apply the quadratic formula to
obtain

β =
−wV ±

√
d2(w2b2 − V 2 + d2b2)

w2 + d2

2.1 Variable Boat Speed

Suppose that boat’s speed is allowed to vary, so that bi is the boat’s speed in
strip i. The algebra can be made a bit simpler by observing that

αi = bi cos θ

βi = bi sin θ,

for some heading, θ. The heading is constant for this strategy, so that θ is
constant (i.e., no subscripts are needed on θ). Set α = cos θ and β = sin θ.

Now

d =
∑ wi

αi
(βi + vi)

=
∑ wi

biα
(biβ + vi),

so that

dα =
∑ wi

bi
(biβ + vi)

= βw +
∑ wivi

bi
.

Set V =
∑
viwi/bi. The same reasoning as above indicates that

β =

−wV ±
√
d2
(
w2 − V 2

+ d2
)

w2 + d2
,

and βi is obtained from βi = biβ.
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3 Dynamic Heading

In this case, allow the boat’s heading to vary arbitrarily as it proceeds across
the current. The goal is to choose the heading so as to minimize the total time
required to cross. Such a strategy is “time-optimal.” In the two previous cases
(Straight Line and Constant Heading), there was no optimization involved; the
constraints on how the course was chosen determine the total time required.

If the current is constant over the journey, then the optimal heading is the
same as the straight line or constant heading strategies, so allow the current to
vary in strips, using the same notation as in the two previous cases.

Unfortunately, I could find no compact algebraic expression for this strategy.
Maybe I’m not smart enough, not patient enough, or don’t know enough, but
a naive first-year calculus approach won’t work because the equations are too
messy; and a more sophisticated calculus of variations approach doesn’t work
because the current velocity is assumed to follow a step function rather than
being smooth. It might be possible to use some kind of a limit argument to go
from smooth functions to step functions with the partial differential equation
provided by the calculus of variations approach, but I lost patience.

In any case, Equations (4) and (5) are still valid, and this provides a means
to find a solution numerically. For any given path, which moves from one strip
to another at the “crossing points,” Equation (4) or (5) allows the total time
required to be calculated. These crossing points are given by the choice of di.
Something like Brent’s method can be used to vary these points to find the
minimum total time. Assuming the inputs are reasonable (i.e., no physically
implausible current setups), this should lead to a global minimum rather than
a local minimum.

3.1 Calm Edge Case

Even if there are only two strips, finding a nice expression for the optimal cross-
ing point is impossible. As far as I can see, such an expression requires a solution
to an eighth-degree polynomial. However, a situation intermediate between two
strips and a single strip with constant current does have a reasonable solution.

Under this “calm edge” case, the boat crosses a strip of constant current,
and, once it reaches the far side, it can travel up and down at full speed, without
any effect from current. If the boat’s thrust vector is given by (α, β), and the
width of the current is w, then

t1 =
w

α

is the time taken to cross the current. Let v be the velocity of the current.
Then, the boat emerges on the far side with y-coordinate

d1 = t1(β + v)

=
w

α
(β + v).
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The time required to travel along the calm edge to the destination at d is then

t2 =
1

b
|d− d1|

=
1

b

∣∣∣d− w

α
(β + v)

∣∣∣ ,
and the total time taken to reach the destination is T = t1 + t2. The goal is to
minimize T .

The absolute value in the expression for t2 makes this scenario tricky. There
are exactly three situations leading to T being at a minimum: the boat heads
directly for d so that t2 = 0; or t2 6= 0 and the quantity in the absolute value is
either positive or negative (d1 is north or south of d). The most straightforward
way to determine the minimum for T is to consider three distinct functions:

T (0) =
w(w2 + d2)

vwd± w
√
w2b2 − v2w2 + d2b2

T (+) =
w

α
+

1

b

(
d− w

α
(β + v)

)
T (−) =

w

α
− 1

b

(
d− w

α
(β + v)

)
,

where T (0) is a constant equal to the time required to follow a direct course to
d, as given by Equation (2). Find the minimums for T (+) and T (−), along with
the value for T (0). Whichever of these is the least is the minimum possible value
for T .

Set S = ±1, depending on whether T (+) or T (−) is being considered. If T (S)

has a minimum, then it will occur at an α for which dT (S)/dα is zero:

dT (S)

dα
= − w

α2
+
S

b

(
w

α2
(β + v)− w

α

dβ

dα

)
= − w

α2
+
S

b

(
w

α2
(β + v) +

w

β

)
.

Set this to zero and solve for α, bearing in mind that β depends on α:

0 = − 1

α2
+
S

b

(
1

α2
(β + v) +

1

β

)
= −bβ + S

(
β(β + v) + α2

)
= −bβ + S

(
β2 + vβ + α2

)
= −bβ + S

(
b2 + vβ

)
= Sb2 + β (Sv − b) .

Then,

β =
Sb2

b− Sv
, (6)
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and

α2 = b2 − β2

= b2
(

1− b2

(b− Sv)2

)
=

b2v(v − 2Sb)

(b− Sv)2
.

Since α is always positive, this can be written as

α = b

√
v(v − 2Sb)

(b− Sv)2
.

When S = +1, these values for α and β indicate the extreme value for T (+);
and when S = −1, they indicate the extreme value for T (−), assuming that such
values exist, and bearing in mind that these extreme values may be maxima,
not minima.

This is surprising. Nowhere in the expressions for α or β does d or w appear.
Once d is so far away that a direct course to d is no longer the fastest, the best
approach is entirely independent of just how far away d may be. The best
heading depends only on the relative sizes of b and v.

4 The Dog Paddle

Consider a dog at (x, y) traveling toward a stick at S = (0, 0) through a current
flowing in the y-direction at rate v. Let the dog start the trip (time t = 0)
at position (w, d). In earlier cases, the destination was at (w, d) and the dog
started at (0, 0), but the algebra will be simpler if the destination is at (0, 0).

Let D = (x(t), y(t)) be the position of the dog. The dog always paddles
directly toward the stick, although its course is modified by the current. Let
(α, β) be the direction in which the dog paddles (the thrust vector), and require
that b2 = α2 + β2, for some fixed b. The value, b, is the speed at which the dog
swims in calm water. Taking the current into account,

D′(t) =

(
dx

dt
,
dy

dt

)
= (α, β + v).

Although the dog is swept along by the current, he always paddles toward the
stick; that is, the thrust vector always points to the stick:

(α, β)

b
=

S −D
||S −D||

=
−D
||D||

=
−(x, y)√
x2 + y2

.

This provides explicit expressions for α and β in terms of x and y, hence an
explicit expression for D′(t).
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The foregoing provides an expression relating x(t) and y(t):

dy

dx
=

dy/dt

dx/dt

=
β + v

α

=

−by√
x2+y2

+ v

−bx√
x2+y2

=
by − v

√
x2 + y2

bx

Solving this differential equation involves a few steps. Set u = y/x and make
the substitutions

y = xu

dy

dx
= u+ x

du

dx

x2 + y2 = x2(1 + u2)

to obtain

dy

dx
=

bxu− v
√
x2(1 + u2)

bx
.

Assume that x < 0. This is reasonable; it means that the dog starts out to the
left of the destination, and stays to the left. Then

u+ x
du

dx
=

bxu+ vx
√

1 + u2

bx

u+ x
du

dx
= u+ (v/b)

√
1 + u2

x
du

dx
= (v/b)

√
1 + u2

The variables can now be separated:

b√
1 + u2

du =
v

x
dx.

Integrating both sides yields

b ln |u+
√

1 + u2| = v ln |x|+ C,

or, equivalently,

sinh−1 u = (v/b) ln |x|+ C

= ln |Cx|v/b, (7)
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where C is a generic stand-in for the constant of integration. Recall that

sinh z =
ez − e−z

2
,

so that

sinh(ln z) =
1

2

(
z − 1

z

)
,

and we have

u =
1

2

(
|Cx|v/b − |Cx|−v/b

)
.

Recalling that u = y/x, we now have

y =
x

2

(
|Cx|v/b − |Cx|−v/b

)
. (8)

To determine C, go back to Equation (7) and recall that the dog starts at
position (x, y) = (w, d), where w < 0. So u = d/w and

ln |u+
√

1 + u2| = ln |Cx|v/b

|(d/w) +
√

1 + (d/w)2| = |Cw|v/b

|(d/w) +
√

1 + (d/w)2|b/v = |Cw|
1

w

(
(d/w) +

√
1 + (d/w)2

)b/v
= C,

where dropping the absolute values on C is OK because the absolute value is
applied in Equation (8).

There is one fly in the ointment. What happens when the dog reaches the
destination, which is taken to be the origin? In this case, the expression for y
given by Equation (8) appears to involve a division by zero. In fact, the x-term
out front means that you are not really dividing by zero, but some care is needed
when implementing this in a computer program.

It would also be useful to know the time at which various x-positions are
reached. This requires the solution to a messy integral:

dx

dt
=

−bx√
x2 + y2

dt = −
√
x2 + y2

bx
dx

so that

t(x) = −

∫ √
x2 + y2

bx
dx

=
1

b

∫ √
1 + (y/x)2 dx, .
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where the minus disappears in the second step because x < 0. According to
Equation (8), this can be written as

t(x) =
1

b

∫ √
1 +

(
1

2

(
|Cx|v/b − |Cx|−v/b

))2

dx.

Set k = v/b, and drop the absolute value; if we assume that x does not change
sign over the integration, it’s OK to drop it (i.e., x < 0 and take C < 0). Set
w = Cx so that dw = Cdx. Then

t(x) =
1

bC

∫ √
1 +

(
1

2

(
wk − 1

wk

))2

dw

=
1

bC

∫ √
1 +

1

4

(
w2k − 2 +

1

w2k

)
dw

=
1

bC

∫ √
1

4

(
w2k + 2 +

1

w2k

)
dw

=
1

2bC

∫ √(
wk +

1

wk

)2

dw

=
1

2bC

∫ (
wk +

1

wk

)
dw

This is an integral we can do:

t(x) =
1

2bC

(
wk+1

k + 1
+
w1−k

1− k

)
+K, (9)

for some constant of integration, K. Unwinding the substitutions gives

t(x) =
1

2bC

(
(Cx)(v/b)+1

(v/b) + 1
+

(Cx)1−(v/b)

1− (v/b)

)
+K

=
1

2C

(
(Cx)(v/b)+1

v + b
+

(Cx)1−(v/b)

b− v

)
+K,

where we must be careful to preserve the assumption that Cx > 0.
The dog starts at x = w < 0 when t = 0, so that

0 = t(w)

=
1

2C

(
(Cw)(v/b)+1

v + b
+

(Cw)1−(v/b)

b− v

)
+K,

and

K = − 1

2C

(
(Cw)(v/b)+1

v + b
+

(Cw)1−(v/b)

b− v

)
. (10)
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Note that x is always less than zero, so we must take C < 0, which means that
K > 0. Also, the dog arrives at the destination when x = 0, so the total time
required for the trip is K.

4.1 Current equals Boat Speed

The derivation above assumes that v 6= b. In fact, Equation (8) for the position,
remains valid when v = b, but the equation for time as a function of x is no longer
valid. In particular, K, the constant of integration, given by Equation (10),
involves dividing by b− v.

Go back to Equation (9). It’s a solution to

t(x) =
1

2bC

∫ (
wk +

1

wk

)
dw,

where k = v/b, which is now 1. So, when v = b, we have

t(x) =
1

2bC

∫ (
w +

1

w

)
dw,

and

t(x) =
1

2bC

(
1

2
w2 + ln |w|

)
+K.

Unwinding the substitution w = Cx,

t(x) =
1

2bC

(
1

2
(Cx)2 + ln(Cx)

)
+K,

where the absolute value can be dropped, just as above.
The constant of integration is now given by

0 = t(w)

=
1

2bC

(
1

2
(Cw)2 + ln(Cw)

)
+K,

and

K =
−1

2bC

(
1

2
(Cw)2 + ln(Cw)

)
.

4.2 Dog Paddle with Variable Current and Boat Speed

Allow the current and boat speed to vary in strips, as usual, and apply the
dog paddle strategy. Before launching into any calculation, think about what’s
happening. The equations above tell us where the dog is and how much time
has passed if the current and boat speed are constant and the dog is always
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swimming toward (0, 0). Over the first strip, the equations above are still accu-
rate; the dog doesn’t know that the speeds will change; he just swims toward
the destination.

Once the dog reaches the second strip and the current changes, he continues
to swim toward (0, 0). The equations are still accurate, although the constants
of integration change because the “starting point” (where the dog crosses into
the new strip) and the dog’s speed are now different. As the dog moves from
strip to strip, we just need to recalculate the constants of integration without
changing the equations involved. Put another way, we need to solve the same
problem (and reach solutions of the same form) each time the dog moves from
one strip to the next.

When implementing this as a computer program, it is important to note
that, if there is no current, then the equations above won’t work. They blow
up due to divisions by zero. If there’s no current, then the dog paddles in a
straight line, and the solution is trivial anyway (at least for that strip).
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